翻訳と辞書 |
Dini–Lipschitz criterion : ウィキペディア英語版 | Dini–Lipschitz criterion
In mathematics, the Dini–Lipschitz criterion is a sufficient condition for the Fourier series of a periodic function to converge uniformly at all real numbers. It was introduced by , as a strengthening of a weaker criterion introduced by . The criterion states that the Fourier series of a periodic function ''f'' converges uniformly on the real line if : where ω is the modulus of continuity of ''f'' with respect to δ. ==References==
* *
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Dini–Lipschitz criterion」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|